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Abstract Wave-function-based computational techniques

for describing electron correlation effects in periodic sys-

tems have a long history. Among early attempts, the method

proposed by Colle and Salvetti (Theor Chim Acta 37:329,

1975) more than 30 years ago is noteworthy for its sim-

plicity, power, and far-reaching consequences. The renewed

interest in this topic is due to the well-known failure of

techniques based on Density Functional Theory when it

comes to obtaining very accurate estimates of some impor-

tant quantities. Here we present the essential features of an

ab initio code, (CRYSCOR) recently implemented (Phys Rev

B 76: 075101, 075102, 2007), which solves the MP2 equa-

tions for crystals by adopting a local-correlation approach

and using as a reference the Hartree-Fock solution provided

by theCRYSTAL program. As an example of application, we

discuss the MP2 corrections to the frequency of some

vibrational modes in a proton-ordered structure of water ice

(Ice XI).

Keywords Ab initio � Local correlation � MP2 �
Crystal � Vibrational frequencies � Ice XI

1 Introduction

A post-Hartree-Fock (HF) computational scheme for

describing the electronic properties of non-conducting

crystals (CRYSCOR) has been recently presented [1–5].

Using as a zero approximation the solution provided by the

CRYSTAL program [6], it solves the perturbative problem

at second order (MP2), by adopting a local-correlation

approach [7]. The motivations for this effort are exposed in

Sect. 2 in a historical perspective. The essential aspects of

the new technique and its present capabilities are recalled

in Sect. 3. As an example of its possible use, we analyze in

Sect. 4 the MP2 corrections to the frequency of some

vibrational modes in a proton-ordered structure of ordinary

ice (Ice XI). The results are critically compared to those

obtained using DFT. Some prospects of future develop-

ments are outlined in Sect. 5.

2 Post-Hartree-Fock techniques for crystals:

a historical perspective

For more than two decades, computational techniques

based on Density Functional Theory (DFT) in the Kohn–

Sham formulation [8] have dominated the field of simula-

tion studies concerning the electronic properties of

condensed systems. This resulted from a lucky combina-

tion of successful ingredients: (a) the power of the

one-electron Kohn–Sham Hamiltonian and of its general-

izations (DFT response theory); (b) the use therein of

exchange-correlation functionals progressively better cali-

brated; (c) the restriction of the problem to the valence

electrons, which justifies the adoption of a basis set (BS) of

plane waves in combination with suitable pseudopotentials

for the core electrons, and (d) the simplicity and generality
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of the resulting codes, such as VASP [9, 10]. Furthermore,

the Car-Parrinello technique [11] has opened the possibility

to incorporate economically in this kind of programs the

so-called ab initio molecular dynamics, a tool providing

extremely valuable information in a wide spectrum of

solid-state problems.

Another route was possible, consisting in the general-

ization to crystalline systems of wave-function-based

techniques as were and are practised in molecular quantum

chemistry. The group of Theoretical Chemistry in Torino

has been among the pioneers of this alternative route: after

about 10 years of preparatory work in collaboration with

Saunders of the Daresbury Laboratories, our CRYSTAL

program appeared in 1988 as the first public HF code for

periodic systems [12, 13]. It was modeled to some extent

on Pople’s Gaussian82 code [14, 15] from which it took

over the use of Gaussian-type functions (GTF) as BS and

some of the related algorithms; however, many new ideas

had been introduced for exploiting translational and point

symmetry, and for evaluating approximately or truncating

efficiently the infinite lattice sums. From that early version

to the newest one [6], the code has been improved

enormously (in particular, DFT techniques have been

implemented), but its basic features have remained essen-

tially the same. Because of its special characteristics,

CRYSTAL has enjoyed a moderate but standing success

among workers in the field. Let us just mention the fact that

the strict similarity between this periodic program and

standard molecular codes permits their combined use not

only for obtaining reference energies, but also for esti-

mating the effects of an upscaling of the quality of the

calculation using ONIOM-like techniques [16–18].

However, CRYSTAL’s most noteworthy peculiarity, i.e.,

its ability to solve (approximately) the HF equations, has

been felt for many years as a practically useless feature,

except for allowing CRYSTAL to add a fraction of ‘‘exact

exchange’’ to the local DFT functionals, as required by the

successful ‘‘hybrid exchange’’ techniques [19] (again, a

first-time achievement among periodic codes). As a matter

of fact, HF is conceptually important, since it occupies the

lowest rank in the hierarchy of wave-function based

methods which allow us to study non-empirically various

properties of many-electron systems: the ascent along this

hierarchy rigorously and systematically improves the

accuracy, which is not possible in the frame of DFT. On the

other hand, HF does not cover the effects of electron

Coulomb correlation: though relatively small, these effects

are often of decisive importance for a correct individuali-

zation of the stable structures and for the accurate

description of reactive processes; furthermore (in spite of

Koopmans’ theorem), one-electron HF eigenvalues are

usually a poor approximation of ionization and electron

affinity energies. This is not only true for molecules but

also for condensed systems as well: in this case, the

attention is often more concentrated on band structures

rather than on total ground-state energy and related elec-

tronic properties. The failure of the HF description in this

respect, concerning in particular the free-electron gas, is

well known and has often been over-emphasized. It can be

noted that the lack in HF of adjustable parameters (at

variance with the wide spectrum of exchange-correlation

formulae practiced in DFT) may have added to its scarce

attractiveness. On the other hand, climbing the ladder of

progressively more accurate techniques, even just up to the

next step (MP2), is very costly, especially for periodic

structures. For many years, pioneering attempts in this

respect have been limited to extremely simple systems, for

instance, the one-dimensional hydrogen chain [20].

The Colle-Salvetti technique, proposed in the mid sev-

enties and progressively improved [21–23], offered to

some extent a way out of these difficulties. It was a brilliant

shortcut for estimating approximately, but accurately, the

correlation effects on ground-state energies and excitation

energies. What was particularly interesting about it, is that

it was formulated in the spirit of wave-function based

methods, by introducing a reasonable Ansatz as concerns

the modified form of the two-electron density matrix with

respect to that provided by the reference HF calculation.

Through a series of well-argumented approximations,

working formulae were obtained, easy to use and con-

taining a minimum amount of parametrization. It is not the

case here to remember the far reaching consequences of

that approach: the restatement of the Colle-Salvetti formula

by Lee, Yang and Parr in the frame of DFT [24], has

resulted in one of the most successful correlation func-

tionals ever proposed. Rather, we would like to recall the

fruitful interaction that has taken place between Salvetti’s

group and ours in Torino, to introduce that technique in

CRYSTAL [25, 26]. The results were quite satisfactory for

a number of systems of different nature [25–28], and

competitive with those obtained using DFT approaches.

Something has changed in the very last years in the

domain of computational techniques for ‘‘large’’ systems

(big molecules or periodic structures). With the explosively

growing power of computer facilities and the increasing

sophistication of simulation tools, new requirements are

being formulated, and new routes begin to be explored. On

the one hand, the limitations of DFT approaches have often

become evident, due to their inability to describe weak

interactions (dispersive forces), their overestimation of

transition state energies, their underestimation of the

energies of excited states with a charge-transfer character,

etc. On the other hand, the power and accuracy of

N-scaling wave-function-based local-correlation tech-

niques, as implemented for instance in the MOLPRO

program [29], have been convincingly demonstrated in the
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molecular context [30– 32]. Dynamical correlation is not a

long-range effect as compared to Coulomb interactions,

already treated at the HF level. The OðN5Þ scaling of

canonical MP2 method or OðN6Þ of coupled cluster

(CCSD) approaches is caused by the use of non-local,

canonical molecular orbitals. These orbitals diagonalize the

Fock matrix, which considerably simplifies the formalism

of the post-HF correlation schemes; on the other hand, their

delocalized structure prevents the short-range nature of

dynamic correlation to be exploited. The reverse occurs, in

a sense, when spatially localized orbitals are used [33].

Precisely for these reasons, there is a renewed interest in

wave-function-based methods even in the field of solid

state physics. While referring to a recent publication [4] for

a detailed account of existing literature, we just want here

to mention some of the most interesting techniques cur-

rently explored and tested.

Fulde, Stollhoff and coworkers have pioneered the

studies of electron correlation in solids using local

approaches, by developing a technique which can be

applied both to insulating and conducting systems [34–36].

An orbital invariant formalism for MP2, based on the

Laplace transform of the energy denominators [37], has

been applied to systems, periodic in one and two dimen-

sions, by Ayala et al. [38] in an atomic orbital AO

representation. Förner and coworkers developed local CC

theory for extended one-dimensional systems [39] which

allowed them to recover most of the correlation energy;

they used for this purpose mutually orthogonal Wannier

functions (WF) [40], obtained as a Fourier transformation

of occupied and virtual Bloch states. Flocke and Bartlett

suggested a method where the correlation energy of crys-

tals at the CC level is estimated using natural bond orbitals,

obtained for a set of small subunits of the given structure

[41]. Similar ideas are used in Stoll’s incremental scheme

[42], where the correlation effects are calculated through a

many-body expansion in terms of groups of localized

orbitals. In the post-HF part of the calculation, the infinite

crystal is modeled as a large enough cluster and the n-body

terms of the expansion contain the contributions of corre-

lation among different sets of n orbitals. Applications of

the incremental scheme cover a large class of systems and

for many of them represent the best solution presently

available. The case of the ionic crystals can be cited as an

example [43].

3 The CRYSCOR program

In spite of these efforts, no code yet exists for the ab initio

treatment of correlation effects in crystals characterized by

generality, robustness, and user-friendliness. A few years

ago, some of the present authors together with the group of

professor Schütz of the University of Regensburg started

the CRYSCOR project with precisely this aim. Our

approach is based on the local correlation scheme origi-

nally proposed for molecules by Pulay and Saebø [7] and

further developed by Werner, Schütz et al. [30–32]. At

present, CRYSCOR solves the local-MP2 (LMP2) equations

for non-conducting, non-spin-polarized crystals, using as a

reference the HF wave-function provided by the LCAO

periodic code CRYSTAL in a BS of GTFs, f/lg [6]. Note

that the quality of the computation finally depends on that

of the BS. The latter cannot be chosen at will, because too

diffuse functions can cause instabilities in the HF-SCF

procedure [12, 13]. However, a number of GTFs can be

included a posteriori on top of those used in the CRYSTAL

calculation (the so-called ‘‘dual’’ BS), to improve the

description of the virtual manifold. The main characteris-

tics of CRYSCOR and its present capabilities are outlined

below.

3.1 Basic features and computational parameters

3.1.1 The local functions and their truncation

Following Pulay’s ideas [7], local functions are used in our

LMP2 method to span the occupied and virtual manifolds

of the HF reference. For the former, orthonormal WFs are

used (to be denoted as i, j, etc.) which are generated by

CRYSTAL from the canonical occupied Bloch orbitals

using the scheme devised by Zicovich-Wilson et al. [44].

For the latter, we use the so-called projected atomic orbi-

tals (PAO), denoted a, b, etc., which result from the

projection of the occupied space out of the /l’s; PAOs

form a redundant nonorthogonal set, but are appreciably

well localized.

Both WFs and PAOs are expressed as a linear combi-

nation of the /l’s, in principle extended to infinity.

A crucial issue is then the truncation of their tails. Two

parameters, tolw and tolp, are set from input such that

all terms in the linear combination are neglected whose

coefficients are less, in absolute value, than the respective

tolerances. A value tolw = tolp = 0.0001 is

recommended.

3.1.2 The use of translational and point symmetry

While symmetry is practically irrelevant for big molecules,

it is of fundamental importance for periodic structures.

CRYSTAL provides our program with all the needed

information concerning translational and point-group

symmetry of the system. It also symmetrizes the WFs

owing to the procedure proposed by Casassa et al. [45]

PAOs have by construction the symmetry of the parent

GTFs. We note in particular that all WFs and PAOs can be
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generated through lattice translations from those formally

attributed to the reference zero cell, which are in a number

of N/2 and M, respectively, N being the number of elec-

trons and M the number of AOs per unit cell. The full

exploitation of symmetry is an essential feature of our

method: it permits us to reduce the computational effort to

irreducible quantities.

3.1.3 The LMP2 equations: use of the locality Ansatz

The orbital invariant MP2 energy per unit cell in the local

approximation is given by the following expression:

ELMP2 ¼
X

ði20 cellÞ

X

ðj near iÞ
ELMP2

i;j ð1Þ

ELMP2
i;j ¼

X

ða;bÞ2½i;j�
K i;j

a;b 2T i;j
a;b � T i;j

b;a

� �
ð2Þ

Here K i;j
a;b � i; ajj; bð Þ are the electron repulsion integrals

(ERI) between two WF–PAO product distributions (PD),

and T i;j
b;a are the excitation amplitudes, which are deter-

mined by solving self-consistently the LMP2 equations [1].

The limitation of the first sum of equation (1) reflects the

use of translational symmetry; in fact, the calculation is

restricted to the symmetry-irreducible WF pairs with the

first WF in the zero cell. The truncation of the other sums

corresponds to the use of the locality Ansatz. Consider first

equation (2). For a given pair of WFs i and j, the excitation

space is confined to their spatial vicinity, or in other words,

to the so-called domain [ij], which is the union of the

domains of the two WFs. This means that the amplitudes

T ij
ab are assumed to be non-zero only if PAOs a and b are

spatially close to WFs i and/or j. On the other hand, as

indicated by the second sum in Eq. (1), the centers of the

two WFs must be relatively close to each other; otherwise,

the corresponding ‘‘pair energy’’ E2
i;j is negligibly small. In

summary, the local approximation is described by two

parameters: the domain size S of each WF and D, the

maximum distance between two WFs beyond which pair

energies are neglected. The overall scaling is then pro-

portional to n, the size of the irreducible portion of the

crystal unit cell.

Typically, the domain of a WF includes all PAOs that

belong to first and second neighbors about its center; D is

usually set to 8/12 Å.

3.1.4 Evaluation of ERIs and extrapolation to infinity

The evaluation of the ERIs in the f/lg set and their four-

index transformation into the WF–PAO basis (see Eq. 2)

is so demanding computationally that no accurate calcu-

lation for systems of real interest is feasible; their

approximate evaluation is then mandatory. For this

purpose, WF pairs (i, j) are first classified according to the

distance dij between their centers into ‘‘strong?weak’’

(‘‘close-by’’) pairs ð0� dij\d1Þ and ‘‘distant’’ pairs

ðd1� dij\DÞ: For integrals related to close-by pairs, the

density-fitting-periodic (DFP) technique is used, while

distant pairs are treated in a multipolar approximation.

The analytic evaluation of integrals is always feasible for

calibration purposes.

The density fitting technique for calculating ERIs in a

molecular context has a long and successful history

[46–48]. It implies the expansion of PDs in a BS of

auxiliary fitting functions, fUPg; which can be either

GTFs or Poisson functions, the Laplacian of GTFs [49].

DFP represents its extension to periodic systems, and is

characterized by two special features with respect to its

molecular counterpart [2, 3]: (i) the systematic use of

reciprocal space techniques; (ii) the careful handling of

long-range interactions, via a separate technique for

evaluating the coefficients in the expansion of fitting

functions of GTF type (which are few in number, but

have non-zero multipoles) and of Poisson-function type

(which are the large majority of the fitting set, but exhibit

fast decay and have no multipoles to any order). DFP has

been shown to be very accurate and efficient, with gains

of one to three orders of magnitude in computational

times with respect to the analytic evaluation of the

integrals.

For distant pairs, the two WF–PAO PDs are essentially

external to each other, and a multipolar technique can

safely be used. After evaluating the multipoles of each PD

about the respective WF center up to a maximum order (L),

the ERI is estimated as the Coulomb interaction between

the multipoles of the two PDs.

Neglecting pairs beyond D is crucial for limiting the

number of excitation amplitudes needed (see Eq. 3), and so

to insure the required n-scaling. However, due to the

compact nature of 3-d crystals, the missing contribution to

ELMP2 from those ‘‘very distant’’ pairs, Eout; only decays as

D�3: An accurate zero-cost estimate of Eout is possible after

considering that at large distances pair energies follow the

London d�6
ij law as is present in the well-known 6-12

Lennard-Jones (LJ) expression. By exploiting translational

symmetry, the LJ parameters for each type of pair are

obtained from the pair energies explicitly calculated up to

D, and the corresponding contribution is then extrapolated

from D to infinity [4].

The main parameters involved and their standard set-

tings are as follows. The separation d1 between close-by

and distant pairs is set to 6–8 Å. An adequate shrinking

factor for reciprocal-space techniques in DFP turns out

usually to be the same as in CRYSTAL’s SCF procedure.

The fUPg set of fitting functions can be taken from a

library, based on MOLPRO, but adapted and complemented
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for use with periodic systems; triple-zeta quality sets are

usually adequate. In the multipolar calculation for distant

pairs, the maximum order of multipoles, L, is set to four by

default.

3.2 A summary of CRYSCOR capabilities

In principle, any system translationally periodic in 3

(ordinary crystals), 2 (slabs), 1 (polymers), and 0 (mole-

cules) dimensions can be treated, provided that their

closed-shell HF solution is a reasonable reference. As

anticipated, the choice of the f/lg BS is a critical issue for

two main reasons: first, one must be sure that the CRYS-

TAL calculation is feasible which prevents the use of very

diffuse GTFs; second, an acceptable description of the

lower portion of the virtual manifold should be achieved.

Work is going on to make progress in both directions, also

by exploiting the dual basis option (see Sect. 3), and to set

up a library of computationally reasonable f/lg sets.

Among calculated properties, the energy ELMP2 is of course

the most important. In this respect, the following should be

noted.

(i) Very often, the quantity of interest is the formation

energy Ef of the crystal from some ‘‘‘‘reactants’’

(atoms, ions, molecules,…). In calculating the differ-

ence, it is important to account for the basis-set-

superposition-error (BSSE) when incomplete BSs are

used. As concerns the LMP2 contribution to Ef, an

easy solution to this problem has been proposed, i.e.,

the so-called partition method [50], which consists in

estimating Ef;LMP2 directly from Eq. (3) by excluding

those WF pairs where both i and j belong to the same

reactant. This technique must, however, be used with

some caution, because it tends to slightly underesti-

mate the BSSE, contrary to the standard counterpoise

technique which usually underestimates it [51, 52].

(ii) Another important class of problems concerns the

evaluation of the correlation correction to the inter-

action energy between two subsystems A and B (for

instance, between adsorbed molecules and a periodic

substrate). Again, it is possible to restrict the calcu-

lation to WF pairs with i 2 A; j 2 B; with enormous

savings in time [4].

(iii) Studying the dependence of the total electronic

energy on the displacement of nuclear coordinates

from the equilibrium configuration permits us to

evaluate correlation effects on elastic constants and

on vibrational frequencies (for the latter case, see

Sect. 4).

(iv) CRYSCOR calculates (at zero cost) Grimme’s spin-

component-scaled estimate of the MP2 correlation

energy [53, 54]; this formula seems very effective in

molecules, but is still to be systematically tested in

crystals.

Apart from energy, CRYSCOR allows us to obtain the

correlation correction to the one-electron density matrix

according to two different schemes [55–57]. This feature is

potentially important because very accurate experimental

information is available on the density matrix of many

crystalline systems via directional Compton profiles and

X-ray structure factors [58].

Computational times heavily depend on the complexity

of the system and on the tolerances adopted. The two

examples below are referred to single-point computations

performed on an Opteron 2.2 GHz single processor, 4 GB

memory:

(a) fcc argon (1 atom per cell; [4s4p3d1f] BS; 13-atom

WF domains; d1 = 6 Å; D = 12 Å; 36 irreducible

WF pairs; tolw = tolp = 0.0001): 38,000 CPU s

[52].

(b) Ice XI (12 atoms per cell, [6 - 311G(p,d)] BS;

molecular WF domains; d1 = 6 Å; D = 12 Å; 1,003

irreducible WF pairs; tolw = tolp = 0.0001):

6,500 CPU s [59].

The difference in computational times must be traced

back to the fact that much larger WF domains have been

used in the former case (13 atoms) than in the latter (3

atoms).

4 Vibrational frequencies in crystals: the case of Ice XI

Detailed information about many crystalline systems (e.g.,

molecular crystals) can be obtained from vibrational

spectroscopy and, in the case of systems with hydrogen

atoms, from inelastic incoherent neutron scattering (IINS)

experiments. The comparison between experimental spec-

tra and those obtained by ab initio computations is of great

help for the interpretation of the vibrational modes and for

the calibration of the theoretical tool.

In the frame of the Born-Oppenheimer separation of

nuclear from electronic motions, the harmonic approxi-

mation usually provides a reasonable guess of vibrational

frequencies; in CRYSTAL it is adopted for calculating the

‘‘optical’’ ones (those at the zone center) according to the

standard procedure [60]. The mass weighted matrix V of

the second derivatives of the electronic energy per cell with

respect to the displacements of the M nuclei in the unit cell

from the equilibrium configuration R0 is diagonalized

ðK ¼ U�1VUÞ: This permits the identification of 3M

independent vibrational modes, each characterized by a

harmonic frequency m0
k ¼

ffiffiffiffiffi
kk

p
; the eigenvector Uk

describes the corresponding nuclear motion as a function of

Theor Chem Acc (2009) 123:327–335 331

123



the 1D normal coordinate Q : RkðQÞ ¼ R0 þ ðQk1
k=4ÞUk:

The accuracy of such estimates rests not only on the

validity of the harmonic approximation for separating the

nuclear motions from each other, but also on the technique

used for evaluating the electronic energy, and on the

hypothesis that the dependence of the electronic energy on

Q is well described by a parabolic behavior beyond a strict

vicinity of the equilibrium. Let us retain the first approxi-

mation (the independence of modes), and consider the 1D

Schrödinger equation for the k-th mode:

ĥk
Y=Xjw

k
nðQÞi ¼ ek

njw
k
nðQÞi

ĥk
Y=X ¼ �

1

2

d2

dQ2
þWk

Y=XðQÞ ð3Þ

Here, Y indicates the method adopted for finding the

equilibrium configuration R0;Y and for separating the

modes using the corresponding VY matrix, while X specifies

the technique employed for calculating the energy at a

given configuration. So, Wk
Y=XðQÞ is the difference between

the ‘‘X’’ electronic energies calculated at the nuclear con-

figurations Rk
YðQÞ and R0;Y :

X may be different from Y: the case where Y is the

hybrid B3LYP technique [19] while X is HF?LMP2 is

treated below for the case of Ice XI. The problem here is

that CRYSCOR does not yet calculate the analytic energy

gradients; therefore, an accurate estimate of the equilib-

rium configuration R0;X and of the corresponding mass-

weighted Hessian matrix VX (with X = HF ? LMP2) is

practically unfeasible. On the other hand, it is known that

B3LYP generally provides a description of the equilibrium

configuration and of the vibrational spectrum in good

agreement with the experiment. This is true in the case of

Ice XI as proved in a forthcoming publication. Therefore,

R0;Y and VY from CRYSTAL (with Y = B3LYP) can serve

as a reference for individualizing the different modes and

for estimating the HF?MP2 frequencies from the corre-

sponding Wk
Y=X curves. The validity of this procedure will

be checked a posteriori.

After choosing a mode (k), we can calculate a number of

values Wk
Y=XðQÞ (e.g., for Q regularly spaced between

�2k1
k=4), and perform a polynomial fit of such data. Equa-

tion (1) can then be solved numerically with the desired

accuracy using the numerical method proposed by Lindberg

[61] and implemented by Ugliengo in the ANHARM code

[62]. For finite Q, the function Wk
Y=XðQÞ depends on the set

of coordinates used to represent the eigenvector Uk: In the

present implementation we have limited ourselves to con-

sidering Cartesian coordinates. Work is in progress to

allow other choices to be adopted (for instance, internal

coordinates) and, more fundamentally, to go beyond the

independent-mode approximation through an extension to

periodic systems of techniques successfully introduced in a

molecular context [63, 64]. The approach just described is

applied below to some modes of Ice XI (Ref. [65] for the

whole set of librational modes).

Water ice is the prototype of hydrogen-bonded systems;

Ice XI is its only proton-ordered polymorph which is stable

at zero pressure [66]. It is a ferroelectric crystal of space

group Cmc21 [67, 68]; the reason for its peculiar stability is

not completely understood yet. A detailed computational

study recently performed with two types of DFT Hamil-

tonians and using 16 different models of proton-ordered ice

[69], indicate Cmc21 to be the most stable structure. This

important result is not conclusive, since DFT is known to

generally provide a poor description of long range disper-

sive interactions. New clues could be found by considering

the effects of electron correlation corrections; in a parallel

study [59] based on CRYSTAL ? CRYSCOR calculations

we have critically re-considered the problem of the relative

stability of different Ice structures, already tackled by us in

past years [70]. Special attention has been devoted to

exploring the effect of electronic correlation on the vibra-

tional frequencies, following the scheme just outlined.

Here we concentrate on a few specific modes, which will

permit us to provide more details on some computational

aspects. All calculations described below have been per-

formed using the same 6-311G(p,d) BS as in our previous

study [70]. The region of the vibrational spectrum of Ice

most affected by proton ordering is the librational one as

first found by Li et al. by means of IINS on a partially

Fig. 1 IINS spectra [71] of Ice XI (a) and of ordinary ice (b) in the

librational region. The calculated (B3LYP) librational harmonic

frequencies of Ice XI are reported on top
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transformed specimen (see Fig. 1; [71]), and confirmed

recently by Raman measurements [72]. The B3LYP treat-

ment of the harmonic problem with CRYSTAL permits us

to individualize 12 librational modes (#13 to #24) in the

region 586/1,153 cm-1 (73/143 meV), largely coinciding

with the experimental one (see Fig. 1). These modes are a

combination of three types of oscillation of the almost rigid

molecule about the three orthogonal axes through the

oxygen atom: about z, the perpendicular to the molecular

plane in its equilibrium position (conventionally called

‘‘rocking’’); about x, the symmetry axis (‘‘twisting’’); about

y (‘‘wagging’’). They can be visualized by looking at the

animations available on the web [73]. We consider here

three of these modes (#13, #17, #23), which can be

assigned to the first, second, and fourth peak of the

experimental spectrum, centered at 79, 88, and 116 meV,

respectively [71]. Table 1 reports some numerical results

concerning the three selected modes; Fig. 2 provides pic-

torial information about the limits of the harmonic

approximation and about the adequacy of the procedure

adopted for estimating the correlated frequencies. In the

following, we briefly comment on these data.

The HF harmonic frequencies in the librational region

are appreciably red-shifted with respect to the experiment,

especially at the lowest frequencies. This is to be expected:

HF overestimates the intra-molecular OH bond and

underestimates the intermolecular O–H one; as a matter of

fact, the HF optimized values of dOH and of dO�H are 0.953

and 1.948 Å; to be compared to the respective experimental

values of 0.985 and 1.779 Å: Not surprisingly then, the

second derivatives of the energy with respect to the libra-

tional coordinates are too small. The anharmonicity

Table 1 First two eigenvalues ðe0; e1Þ of the vibrational Hamiltonian

hk
Y=X (Eq. 3) and first transition energy ðx01 ¼ e1 � e0Þ of Ice XI, for

three k modes and three Y/X techniques as indicated

Y HF B3LYP B3LYP

X HF B3LYP HF?LMP2

Mode #13

e0 (30.25) 34.13 (36.35) 39.97 42.94

e1 (90.76) 107.80 (109.05) 123.53 132.50

x01 (60.51) 73.67 (72.70) 83.56 89.56

c 21.7% 14.9%

Mode #17

e0 (36.80) 40.07 (44.05) 46.27 49.41

e1 (110.41) 124.62 (132.14) 141.43 149.95

x01 (73.61) 84.55 (88.09) 95.16 100.54

c 14.9% 8.0%

Mode #23

e0 (59.28) 59.97 (67.79) 68.36 70.33

e1 (177.84) 181.36 (203.39) 206.10 210.30

x01 (118.56) 121.39 (135.60) 137.74 139.97

c 2.4% 1.6%

For X = Y = B3LYP or HF, the harmonic estimate (in parentheses)

and the anharmonicity percentage c ¼ 100ðxanh
01 � xh

01Þ=xh
01 are also

provided. All data in meV (1 meV = 3:675 � 10�5 Hartree =

8.065 cm-1)

Fig. 2 Potential curves Wk
Y=XðQÞ for the three selected modes (see

Eq. 1), with Y=B3LYP, and X either B3LYP (thin continuous line,

open circles), or HF?LMP2 (thick continuous line, full circles). The

harmonic B3LYP approximation is drawn as a dotted line. Scaled

coordinates are used for the x and y axis. The first two anharmonic

levels are drawn on the right (inside the frame for B3LYP, outside it

for HF?LMP2), to be compared with the harmonic ones, 0:5m0 and

1:5m0
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corrections are seen to act in the sense of shifting all fre-

quencies upwards: this is apparently associated with the

onset of strong inter-molecular repulsions for large dis-

placements along the librational normal coordinates. Since

the entity of the correction strongly decreases when passing

from the bottom to the top of the band, the net result is a

general blue-shift with a decrease of the bandwidth. The

anharmonic HF frequencies come so in rather good

agreement with the experiment: this could, however, be the

result of a lucky cancellation of errors, given the poor

description of the ice structure at this level of approxima-

tion. As it is seen in Fig. 1, the B3LYP harmonic spectrum

in this region is much closer to the experiment, which

corresponds to the good energetic and structural descrip-

tion of Ice XI provided by this approximation. The data of

Table 1 show that the anharmonic corrections act qualita-

tively as in the HF case, although they are less important in

percentage. The reasons for the departure from harmonicity

seem, however, to be different in this case. An analysis of

mode #13 shows that the molecule is appreciably deformed

at 1.6 times the classical elongation (dOH is increased by

0.9%, dHOH decreased by 0.3% with respect to the equi-

librium configuration), which means that anharmonicity is

here strictly related to the deviation from the ideal rigid-

molecule behavior. On the whole, the anharmonic B3LYP

spectrum turns out to be quite similar to the experimental

librational one both as concerns distribution of peaks and

band-width, although blue-shifted by about 10 meV on

average.

Consider finally the B3LYP/HF ? MP2 results. As seen

in Table 1, they are about as good as the B3LYP/B3LYP

ones. Figure 2, which reports the calculated Wk
Y=XðQÞ values

(dots) and the interpolating curves for the three selected

modes and the two techniques, permits us to introduce fur-

ther considerations about the present results. The departure

from the harmonic behavior (dotted curve) is particularly

evident for the two low-energy modes, and it is seen to be

appreciable already within the classical elongation

ð�1\Qk1=4
k \1Þ: For mode #17, the two techniques provide

results which are qualitatively different: the B3LYP/B3LYP

curve is considerably more asymmetric, the departure from

harmonicity being much larger in the direction of ‘‘positive’’

Q’s, which is found to correspond to enhanced deformation

of the water molecules; instead, the B3LYP/HF?MP2 curve

resembles rather to a constrained elastic oscillation of the

individual molecules in the repulsive field of the surround-

ing ones. On the other hand, for all three modes, the latter

curve is very close to the B3LYP/B3LYP one in a strict

neighborhood of Q = 0, which provides some support

a posteriori to the procedure adopted, in the sense that it can

be expected that the equilibrium geometry at the ab initio

correlated level, and also the Hessian matrix of the nuclear

motions should be similar to the B3LYP/B3LYP (and

therefore to the experimental) ones. This fact in itself is very

encouraging, if one considers the inadequacy of the zero-

order HF approximation.

Anyhow, the analytic calculation of the MP2 first

derivatives of energy will permit us in a near future to get

rid of the partial inconsistency of the present technique for

the evaluation of the vibrational frequencies. Another

important step would be to estimate the influence of the

coupling of quasi-degenerate modes on the anharmonicity

corrections [64].

5 Conclusions and prospects

A standard version of CRYSCOR with the capabilities here

described is presently being prepared, tested, and docu-

mented; it will be distributed publicly with CRYSTAL in the

near future. At the same time, work is going on in order to

improve its performance, to add new features and to explore

new possibilities. An estimate of the optical excitation

energies via a configuration interaction (singles) scheme is

our first objective. The implementation of a simplified CC

scheme is also being explored, which will permit us to go

beyond MP2, at least for close-by pair excitations.
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